Partial Procedural Geometric Model Fitting for Point Clouds
نویسندگان
چکیده
Geometric model fitting is a fundamental task in computer graphics and computer vision. However, most geometric model fitting methods are unable to fit an arbitrary geometric model (e.g. a surface with holes) to incomplete data, due to that the similarity metrics used in these methods are unable to measure the rigid partial similarity between arbitrary models. This paper hence proposes a novel rigid geometric similarity metric, which is able to measure both the full similarity and the partial similarity between arbitrary geometric models. The proposed metric enables us to perform partial procedural geometric model fitting (PPGMF). The task of PPGMF is to search a procedural geometric model space for the model rigidly similar to a query of non-complete point set. Models in the procedural model space are generated according to a set of parametric modeling rules. A typical query is a point cloud. PPGMF is very useful as it can be used to fit arbitrary geometric models to non-complete (incomplete, over-complete or hybrid-complete) point cloud data. For example, most laser scanning data is non-complete due to occlusion. Our PPGMF method uses Markov chain Monte Carlo technique to optimize the proposed similarity metric over the model space. To accelerate the optimization process, the method also employs a novel coarse-to-fine model dividing strategy to reject dissimilar models in advance. Our method has been demonstrated on a variety of geometric models and non-complete data. Experimental results show that the PPGMF method based on the proposed metric is able to fit non-complete data, while the method based on other metrics is unable. It is also shown that our method can be accelerated by several times via early rejection. CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Geometric algorithms, languages, and systems; ∗e-mail: [email protected] †e-mail: [email protected] (Corresponding author)
منابع مشابه
Target detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کاملTemplate-based Point Cloud Modeling for Building Model
We introduce a novel template-based modeling technique for 3D point clouds sampled from unknown buildings. The approach is based on a hierarchy algebraic template to fit noisy point clouds with sharp features. In the hierarchy template, the first-level, i.e., the lowest-level, contains three kinds of primitive geometries: plane, sphere, and cylinder. These primitive geometries are represented i...
متن کاملA novel method for locating the local terrestrial laser scans in a global aerial point cloud
In addition to the heterogeneity of aerial and terrestrial views, the small scale terrestrial point clouds are hardly comparable with large scale and overhead aerial point clouds. A hierarchical method is proposed for automatic locating of terrestrial scans in aerial point cloud. The proposed method begins with detecting the candidate positions for the deployment of the terrestrial laser scanne...
متن کاملContraction Moves for Geometric Model Fitting
This paper presents a new class of moves, called α-expansioncontraction, which generalizes α-expansion graph cuts for multi-label energy minimization problems. The new moves are particularly useful for optimizing the assignments in model fitting frameworks whose energies include Label Cost (LC), as well as Markov Random Field (MRF) terms. These problems benefit from the contraction moves’ great...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1610.04936 شماره
صفحات -
تاریخ انتشار 2016